Great Bend

ECONOMIC DEVELOPMENT

ARCHITECTURAL ASSESSMENT

Market Forces
Professional Skills
Building Characteristics
Rules and Regulations

FEASIBILITY Architectural/Economics

- The architectural, regulatory and fiscal variables that affect feasibility.
- The resources your Main Street program should have to facilitate feasibility studies.

HISTORY LESSON

Residential use on the upper story was very common.

https://archive.org/details/RadfordsStoresAndFlatBuildings

MARKET FORCES: RESIDENTIAL

- One, One+ or Two-Bedroom Units
- Large open floor plan (800-1,200+ sq. ft.)
- Washer and dryer in units
- One+ Large bedroom and study
- Amenities
 - Outdoor balcony or deck
 - Study are storage space
 - Enclosed parking
 - Elevator

New Housing on Main Street

THE OPEN PLAN UNIT

DESIGN MATTERS

The "Cool" Factor

- Tall Ceilings
- Period Trim
- Open Plan
- High Quality

"Error on the side of quality"

OPPORTUNITIES

Solid Architectural "bones"
Great Location
Housing with creativity

Building upon past success Promote new opportunities

SITE CHARACTERISTICS

Zoning

Zero lot line" development
Virtually all non-industrial uses
permitted
No on-site parking needed

Parking

Always desired, not required
Small projects don't generate
much demand
Downtown residents don't
always work downtown
Higher demand for higher
priced units and condos
City permit process for
downtown residents

BUILDING CHARACTERSTICS

- Size
 - Area
 - Height, 2 story or 3 story +
- Construction type (from building code)
- Structural system (check for adequacy)
- Architectural attributes that are code triggers
 - Number of exits
 - Access to light and ventilation

BUILDING CHARACTERISTICS

- CONSTRUCTION TYPE (IBC 2000)
 - Type III (based upon fire resistance of building elements)
 - Exterior walls are noncombustible materials and interior building elements are of any material permitted by this code.

COST FACTORS

- Accessibility Elevator
- Structural capacity
 — Floor load
 Life Safety (Building Codes)
 - Sprinklers
 - Extra exit stairs
 - Seismic upgrades
- -Environmental

CODES & STANDARDS

Building Codes

National Models, adopted by gov't American with Disabilities Act (ADA) Secretary of the Interior's Standards Code triggers based upon funding source

Ex: HUD funding and lead paint

Know your local code officials

EXISTING BUILDING CODE

- International Existing Building Code (3 Yr cycle)
- Level of activity

Great Bend uses IEBC 2018

EXISTING BUILDING CODE

Three Code Paths

Prescriptive

Work Area

Repairs

Alteration 1

Alteration 2

Alternation 3

Change of Use

Performance

BUILDING USE

- Current use (zoning classifications)
 - First floor
 - Upper floors

Historic use (city directory, Sanborn map)

- First floor
- Upper floors

Vacant (last known legal use)

Kitchen and bath indicate residential use

* Identified historic use (Wisconsin)

HISTORIC USE

- Sanborn fire insurance maps are a valuable tool to evaluate a buildings original fire safety design attributes.
- City directories

Sanborn maps available locally and online

STRUCTURAL CAPACITY

STRUCTURE (IBC 2000)

Residential 40 psf.

Stairs and exits 100 psf.

- One & two-family dwelling 40 psf.
- Office 50 psf., Corridor above 1st fl. 80 psf.
 - Lobbies and first floor corridor 100 psf.
- Original design (archaic materials)
- Condition assessment

Most building meet residential loading Industrial buildings exceed most loads

CODES - FIRE SAFETY

- Fire Districts Exterior Masonry Walls
- Compartmentalization (time rating factors)
- Fire Detection and Alarms
- Fire Suppression (sprinklers)
- Exits

FIRE SAFETY & SPRINKLERS

Always desired

When are they Required?

Change of Use as a trigger

Level of Alteration

Commercial vs Residential systems

Who is the decision maker?

Building Code official

Fire Department

FIRE PROTECTION

Classification of work
Construction type
Non-combustible?
Change of use or not?

Fire separation between floors

When does work on the second floor affect work on the first floor?

CODES AND TIN CEIINGS

An archaic historic material with a 15-minute fire rating

FIRE RATINGS OLD MATERIALS

- Fire resistance ratings systems for building materials were the next step in the evolution of fire safety. Many historic and archaic materials were built before the modern rating systems were established.
- IEBC Resource A

www.huduser.org/portal/publications/destech/fire.html

CODE - SPRINKLERS

- IEBC Historic Buildings
- 1005.4 Occupancy separation
 - Occupancy separation of one hour omitted for buildings with approved sprinkler system throughout.

TIN CEILING 2 HR RATING

1. Remove and reinstall over a new drywall

- 2. Cover with an intumescent coating
- 3. Increase rating on second floor

IBLY DRAWING TC218

REE COATINGS INC.

DOWNTOWN

ruinoo into.

www.firefree.com/assembliesdrawings.php#WoodFloorCeiling2Hr

PERFORMANCE COMPLIANCE

IEBC – Chapter 13

Method of quantifying safety improvement

Less prescriptive

Requires written report by a design professional

The role of the architect

The role of the code official

PERFORMANCE COMPLIANCE

SAFETY PARAMETERS	FIRE SAFETY (FS)	MEANS OF EGRESS (ME)	GENERAL SAFETY (GS)
301.6.1 Building Height 301.6.2 Building Area 301.6.3 Compartmentation			
301.6.4 Tenant and Dwelling Unit Separations 301.6.5 Corridor Walls 301.6.6 Vertical Openings			
301.6.7 HVAC Systems 301.6.8 Automatic Fire Detection 301.6.9 Fire Alarm System			
1301.6.10 Smoke control 1301.6.11 Means of Egress 1301.6.12 Dead ends	* * * * *		
1301.6.13 Maximum Exit Access Travel Distance 1301.6.14 Elevator Control 1301.6.15 Means of Egress Emergency Lighting	****		
3412.6.16 Mixed Occupancies 3412.6.17 Automatic Sprinklers 3412.6.18 Standpipes 3412.6.19 Incidental Accessory Occupancy		**** + 2 =	

"No applicable value to be inserted.

EGRESS REQUIREMENTS

Three-story buildings require two means of egress from the third floor. Exits must have a direct connection to a public right-of-way.

EGRESS REQUIREMENTS

Two-story, single exit permitted for up to 4 units

Note: Second staircase at the rear is needed for the third – fifth floors.

THREE FLOORS, ONE EXIT?

Third floor unit has entry foyer on the second floor (duplex) Rear balcony as an "area of refuge"

SEISMIC HAZARD MAP

SEISMIC RETROFIT

Structural System Trigger Expenditures based upon assessed value

Preservation Brief 41
Seismic Retrofit of Historic Buildings

BUILDING ACCESSIBILITY The Elevator Question

Americans with Disabilities Act (ADA)
Applies to public accommodations
Is retroactive starting in 1990
Readily achievable test (economics)

State Accessibility Codes
Building Permit "trigger"

BUILDING ACCESSIBILITY ADA

Elevator **not** required for buildings less than three stories if:

Under 3,000 sq. ft. except for:

Shopping center

Medical office

Transit Facilities

ADA does not apply to housing

BUILDING ACCESSIBILITY

Fair Housing Act (1991)

Does not apply to older buildings.

The Act requires all newly constructed multi-family dwellings of four or more units intended for first occupancy after March 13, 1991, to have certain features: an accessible entrance on an accessible route, accessible common and public use areas, doors sufficiently wide to accommodate wheelchairs, accessible routes into and through each dwelling...

BUILDING ACCESSIBILITY

Elevator needed for marketability when:

More than three stories
All age marketing
Higher market potential
More than twenty units – ICC
More than ten units – test economics

Two story buildings don't need an elevator to be competitive

LIGHT & VENTILATION

LIGHT & VENTILATION

Natural light requirement – 8% of floor area Natural ventilation requirement – 4% of floor area

EXAMPLE
WINDOW AREA

3' X 6' = 18 sq. ft. per window
x 3 windows

54 sq. ft. of window glazing
27 sq. ft. of vent opening
MAXIMUM ROOM SIZE
54 sq. ft. is 8 % of
675 sq. ft.

ROOM DIMENSION
19' wide x 35' long

LIGHT & VENTILATION

Unit with "borrowed light" bedroom

Unit with "borrowed light" living room

ENVIRONMENTAL ASSESSMENT

- Asbestos
- Lead Paint
- Underground storage tanks
- Other
 - Prior industrial use (Sanborn map, history)
 - -Bird droppings
 - -Mold

LEAD PAINT

LEAD PAINT and Historic Buildings

https://www2.illinois.gov/dnrhistoric/preserve/pages/leadpaint.aspx

EPA Renovation Repair & Painting

Residential units in pre-1978 buildings

Lead-safe work practices
Contractor certification

HISTORIC CLASSIFICATION

- Historic designation status:
 - National Register of Historic Places
 - Local Landmark
 - Individual listing or
 - Contributing building to a district
 - Eligibility for designation (50 years +)

Great Bend KS Proposed DOWNTOWN HISTORIC DISTRICT

HISTORIC BUIDING & \$\$\$s

- Federal Tax Credits for National Register properties is the largest historic preservation program in the country
- State Tax Credits are really working
- Tax Credits work like a rebate
- Equal to 20% of qualified rehab expenses
- Contact SHPO
- Owner should consult accountant.

IRS Restrictions apply

HISTORIC DESIGN REVIEW

- Secretary of the Interior's Standards for Rehabilitation (Historic Building Code)
- Local commissions review of exterior

SHPO review if project has state/federal funding, permits or licensing
SHPO review of entire building.

ARCHITECTURAL FEATURES

- -Architectural elements
- -Fireplaces
- -High ceilings

ARCHITECTURAL TREATMENT

 Exposing the brick in historically finished spaces does not meet Preservation Standards.

HISTORIC INTERIOR

OFFICE BLDG CONVERSION

Existing Plan

OPEN PLAN CONVERSION

Proposed Plan 3 units plus second stair

LIFE CYCLE ASSESSMENT LCA

Quantifying the Value of Building Reuse National Trust for Historic Preservation Preservation Green Lab

LIFE CYCLE ASSESSMENT LCA

Table 12. Number of Years Required for New Buildings to Overcome Climate Change Impacts from Construction Process

According to this study, it takes 10 to 80 years for a new building that is 30 percent more efficient than an average-performing existing building to overcome, through efficient operations, the negative climate change impacts related to construction. This table illustrates the number of years required for different energy efficient, new buildings to overcome impacts.

Building Type	Chicago	Portland	
Urban Village Mixed Use	42 years	80 years	
Single-Family Residential	38 years	50 years	
Commercial Office	25 years	42 years	
Warehouse-to-Office Conversion	12 years	19 years	
Multifamily Residential	16 years	20 years	
Elementary School	10 years	16 years	
Warehouse-to-Residential Conversion*	Never	Never	

Main Street Mixed Use

42 – 80 Years

ENERGY CONSERVATION

Energy Conservation codes are getting more stringent.

Higher efficiency equipment is needed.

Insulating outside walls is generally needed to meet new code requirements.

ENERGY EFFICIENCY

Renovated historic buildings are just as energy efficient as new construction.

Parks Canada Study

CREATING ENERGY EFFICIENT

REACHING NET ZERO

Eight inches of insulation inside the brick walls.

PROMOTION

Host an Upstairs Downtown tour

ANNUAL TOUR

Showcase successes Present opportunities

OPPORTUNITIES

THANK YOU